Bibliography

[1] P. Agnoli and G. D'Agostini. Why does the meter beat the second?. arXiv:physics/0412078v2, 2005. Accessed 14 September 2009.
[2] John Morgan Allman. Evolving Brains. W. H. Freeman, New York, 1999.
[3] Gert Almkvist and Bruce Berndt. Gauss, Landen, Ramanujan, the arithmeticgeometric mean, ellipses, π, and the Ladies Diary. American Mathematical Monthly, 95(7):585-608, 1988.
[4] William J. H. Andrewes (Ed.). The Quest for Longitude: The Proceedings of the Longitude Symposium, Harvard University, Cambridge, Massachusetts, November 4-6, 1993. Collection of Historical Scientific Instruments, Harvard University, Cambridge, Massachusetts, 1996.
[5] Petr Beckmann. A History of Pi. Golem Press, Boulder, Colo., 4th edition, 1977.
[6] Lennart Berggren, Jonathan Borwein and Peter Borwein (Eds.). Pi, A Source Book. Springer, New York, 3rd edition, 2004.
[7] John Malcolm Blair. The Control of Oil. Pantheon Books, New York, 1976.
[8] Benjamin S. Bloom. The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, 13(6):4-16, 1984.
[9] E. Buckingham. On physically similar systems. Physical Review, 4(4):345-376, 1914.
[10] Barry Cipra. Misteaks: And How to Find Them Before the Teacher Does. AK Peters, Natick, Massachusetts, 3rd edition, 2000.
[11] David Corfield. Towards a Philosophy of Real Mathematics. Cambridge University Press, Cambridge, England, 2003.
[12] T. E. Faber. Fluid Dynamics for Physicists. Cambridge University Press, Cambridge, England, 1995.
[13] L. P. Fulcher and B. F. Davis. Theoretical and experimental study of the motion of the simple pendulum. American Journal of Physics, 44(1):51-55, 1976.
[14] George Gamow. Thirty Years that Shook Physics: The Story of Quantum Theory. Dover, New York, 1985.
[15] Simon Gindikin. Tales of Mathematicians and Physicists. Springer, New York, 2007.
[16] Fernand Gobet and Herbert A. Simon. The role of recognition processes and look-ahead search in time-constrained expert problem solving: Evidence from grand-master-level chess. Psychological Science, 7(1):52-55, 1996.
[17] Ronald L. Graham, Donald E. Knuth and Oren Patashnik. Concrete Mathematics. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1994.
[18] Godfrey Harold Hardy, J. E. Littlewood and G. Polya. Inequalities. Cambridge University Press, Cambridge, England, 2nd edition, 1988.
[19] William James. The Principles of Psychology. Harvard University Press, Cambridge, MA, 1981. Originally published in 1890.
[20] Edwin T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620-630, 1957.
[21] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, England, 2003.
[22] A. J. Jerri. The Shannon sampling theorem-Its various extensions and applications: A tutorial review. Proceedings of the IEEE, 65(11):1565-1596, 1977.
[23] Louis V. King. On some new formulae for the numerical calculation of the mutual induction of coaxial circles. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 100(702):60-66, 1921.
[24] Charles Kittel, Walter D. Knight and Malvin A. Ruderman. Mechanics, volume 1 of The Berkeley Physics Course. McGraw-Hill, New York, 1965.
[25] Anne Marchand. Impunity for multinationals. ATTAC, 11 September 2002.
[26] Mars Climate Orbiter Mishap Investigation Board. Phase I report. Technical Report, NASA, 1999.
[27] Michael R. Matthews. Time for Science Education: How Teaching the History and Philosophy of Pendulum Motion can Contribute to Science Literacy. Kluwer, New York, 2000.
[28] R.D. Middlebrook. Low-entropy expressions: the key to design-oriented analysis. In Frontiers in Education Conference, 1991. Twenty-First Annual Conference. 'Engineering Education in a New World Order'. Proceedings, pages 399-403, Purdue University, West Lafayette, Indiana, September 21-24, 1991.
[29] R. D. Middlebrook. Methods of design-oriented analysis: The quadratic equation revisisted. In Frontiers in Education, 1992. Proceedings. Twenty-Second Annual Conference, pages 95-102, Vanderbilt University, November 11-15, 1992.
[30] Paul J. Nahin. When Least is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible. Princeton University Press, Princeton, New Jersey, 2004.
[31] Roger B. Nelsen. Proofs without Words: Exercises in Visual Thinking. Mathematical Association of America, Washington, DC, 1997.
[32] Roger B. Nelsen. Proofs without Words II: More Exercises in Visual Thinking. Mathematical Association of America, Washington, DC, 2000.
[33] Robert A. Nelson and M. G. Olsson. The pendulum: Rich physics from a simple system. American Journal of Physics, 54(2):112-121, 1986.
[34] R. C. Pankhurst. Dimensional Analysis and Scale Factors. Chapman and Hall, London, 1964.
[35] George Polya. Induction and Analogy in Mathematics, volume 1 of Mathematics and Plausible Reasoning. Princeton University Press, Princeton, New Jersey, 1954.
[36] George Polya. Patterns of Plausible Inference, volume 2 of Mathematics and Plausible Reasoning. Princeton University Press, Princeton, New Jersey, 1954.
[37] George Polya. How to Solve It: A New Aspect of the Mathematical Method. Princeton University Press, Princeton, New Jersey, 1957/2004.
[38] Edward M. Purcell. Life at low Reynolds number. American Journal of Physics, 45(1):3-11, 1977.
[39] Gilbert Ryle. The Concept of Mind. Hutchinson's University Library, London, 1949.
[40] Carl Sagan. Contact. Simon \& Schuster, New York, 1985.
[41] E. Salamin. Computation of pi using arithmetic-geometric mean. Mathematics of Computation, 30:565-570, 1976.
[42] Dava Sobel. Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. Walker and Company, New York, 1995.
[43] Richard M. Stallman and Gerald J. Sussman. Forward reasoning and dependencydirected backtracking in a system for computer-aided circuit analysis. AI Memos 380, MIT, Artificial Intelligence Laboratory, 1976.
[44] Edwin F. Taylor and John Archibald Wheeler. Spacetime Physics: Introduction to Special Relativity. W. H. Freeman, New York, 2nd edition, 1992.
[45] Silvanus P. Thompson. Calculus Made Easy: Being a Very-Simplest Introduction to Those Beautiful Methods of Reasoning Which are Generally Called by the Terrifying Names of the Differential Calculus and the Integral Calculus. Macmillan, New York, 2nd edition, 1914.
[46] D. J. Tritton. Physical Fluid Dynamics. Oxford University Press, New York, 2nd edition, 1988.
[47] US Bureau of the Census. Statistical Abstracts of the United States: 1992. Government Printing Office, Washington, DC, 112th edition, 1992.
[48] Max Wertheimer. Productive Thinking. Harper, New York, enlarged edition, 1959.
[49] Paul Zeitz. The Art and Craft of Problem Solving. Wiley, Hoboken, New Jersey, 2nd edition, 2007.

